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Interaction between a vortex filament and an approaching 
rigid sphere 
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The evolution of an infinitely long straight vortex filament in the presence of an 
approaching rigid sphere is considered. The fluid is regarded as being inviscid and 
incompressible. The shape of the vortex filament when the sphere is sufficiently far 
away from the vortex is determined approximately using linear theory. The subse- 
quent evolution is followed numerically by integrating the nonlinear equation of 
motion. 

1. Introduction 
I n  consideration of vortex filaments in inviscid flow, it is often of interest to deter- 

mine how these interact with each other or with surfaces present in the flow field. 
The trailing vortices of an aircraft and a vortex ring approaching a rigid wall are 
examples of such interactions. Raja Gopal (1963) has considered the motion of a 
vortex ring in a circular cylinder while Crow (1970) and Moore (1972) have looked a t  
growth of waves on the trailing vortices of an aircraft. This paper is concerned with 
the interaction between a vortex filament and a moving bluff body. 

A rigid sphere can in many ways be regarded as a typical bluff body and the parti- 
cular case considered here is when the sphere approaches an infinitely long straight 
vortex from infinity a t  a uniform speed. The evolution of the vortex is studied. The 
fluid is regarded as being inviscid and incompressible and of uniform density. 

The motion of the vortex is symmetrical about a plane which passes through the 
centre of the sphere and whose normal is parallel to the axis of the undisturbed straight 
vortex. Thus the situation considered is equivalent to the case of a vortex filament 
moving in a uniform stream over a rigid plane with a hemispherical hump in its path. 

The vortex is regarded as having a small circular cross-section of core radius c. This 
is justified provided that the strain-field to  which the vortex is subjected is sufficiently 
small (Moore & Saffman 1971). 

I n  order to follow the motion of the vortex, the approximate velocity a t  the vortex 
is obtained using the cut-off theory, due to Crow (1970). Then the Helmholtz law, 
that in inviscid fluid vortex lines move with the fluid, lead to an integro-differential 
equation for the motion of the vortex filament. 

The cut-off theory, wherever possible, treats the vortex as being of zero cross-section 
and the velocity field due to the vortex is calculated using the Biot-Savart line integral. 
However, the integral diverges on the vortex line itself. The difficulty is overcome by 
means of a ‘cut-off’, the choice of which depends on the structure of the vortex fila- 
ment, i.e. its core radius and the radial distribution of vorticity (as well as axial flow 
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if present). The influence of the internal structure on the motion of the vortex enters 
only through the cut-off. 

A rigorous justification for the cut-off theory has been provided by Widnall, Bliss & 
Zalay (1971) and Moore & Saffman (1972). The latter give a rule for estimating the 
instantaneous area of the filament cross-section; the variation of the area cannot be 
ignored in nonlinear calculations. It can be shown that the velocity a t  the axis of the 
vortex is approximately that defined by a suitable cut-off. I n  the absence of axial flow 
in t h e  filament, which is the case to be considered here, the error in the velocity defined 
by the cut-off theory is O(c2/p2),  where c is the core radius and p is a typical radius of 
curvature (the error is O(c /p )  when axial flow is present, owing to the effect of Coriolis 
and Reynolds stress forces). The cut-off method is described more fully later. 

The problem is considered in two stages. When the sphere is a t  a large distance 
away from the vortex, the interaction between the vortex and the sphere is weak so 
that the evolution can be approximately determined using linear theory. Thus in $ 2  
the equation of motion of the filament is linearized and solved to obtain an expression 
for the shape of the vortex; the disturbance velocity due to the approaching sphere is 
evaluated using spherical harmonic analysis. 

The shape of the vortex given by linear theory is evaluated a t  a time when the 
sphere, approaching a t  a uniform speed, is a t  a prescribed distance away from the 
position of the undisturbed vortex. This is used as the starting configuration for the 
nonlinear marching problem (2.4) which is integrated numerically for subsequent 
times. In 5 3, the numerical procedure used in the calculations is described while, in 
$4, the image system of a vortex element in a sphere, due to Lighthill (1956), is 
described and an expression for the velocity contribution a t  the vortex due to the 
image system is obtained for use in the numerical calculations. 

The numerical results are presented in $ 5.  The neglect of viscous diffusion and the 
wake of the sphere means that the results are of only approximate validity in real 
fluid flows. Indeed, a qualitative experiment with a bathtub vortex shows that 
although the vortex commences to move as anticipated in $ 5 ,  when the sphere is 
close to the vortex, the wake appears to  interact strongly with the vortex. 

2. Equation of motion and linear theory 
Let rectangular axes Oxyx be chosen so that, in the undisturbed state, Oz lies along 

the axis of the vortex filament. If the vortex has strength F and if a t  time t* its axis 
occupies the curve given parametrically by X*(E,t*), where 6 is chosen so that 

= constant always refers to the same fluid particle, then its motion is governed by 

where V;(&,,t*) is the contribution to the velocity a t  to due to the image vorticity 
in the sphere and due to the motion of the sphere. The notation $ implies that a 
suitable cut-off is used to make the line integral finite a t  6 = to. If the radius of the 
sphere is a and its speed is U ,  then (2.1) can be non-dimensionalized by choosing 
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as well as writing the arc distance s*([, t*) along the filament and core radius ex as 

s* = as, c* = ac. 
Then 

where 
r B = -  

4na u . 
The value of B determines the relative importance in V, of the contribution due to 
the image vorticity and that due to the motion of the sphere. 

Two methods of cut-off to deal with the divergence of the self-induced velocity 
integral in (2.4) are used. For the linear analysis, the method of cut-off employed is 
that due to Crow (1970). This requires that a portion (<,, - c, &, + c) be removed from 
the range of integration, 6 being chosen so that ls(&,+c, t )  -s([,,-c,t)l = 28,c, where 
8, is a constant determined by evaluating the velocity of a circular vortex ring using 
the cut-off integral and comparing it with the known exact result given by Saffman 
( 1  970). This gives 

where v* = h ( r 1 ) / 4 n a  is the swirl velocity in the core and there is no axial flow in 
the filament. The crucial assumption is that the cut-off length 28,c is independent of 
the geometric shape of the vortex filament and depends only on the local structure 
of the vort,ex. Thus the same value of 8, as for a circular vortex ring can be used for a 
vortex filament of any shape provided their local structures are the same. For a 
uniform vortex v = 2rl/c2 so that 

In 28, = &. (2 .7)  

It may be noted that, since ax/& = t, a unit tangent vector to the vortex, i t  follows 
that as/a t  = li?X/a<) so that the cut-off length may be written as 

Equation (2.8) relates e to the cut-off length. Before the cut-off length can be deter- 
mined, R rule must be given for evaluating the core radius c(E,,, t ) .  However, for infinites- 
imal disturbances, the effect of variation of c from its initial value on the governing 
equation is of second order in the perturbation quantity so that for the linear analysis 
this can be neglected and, uniformly in [, c = c,,, where cx = ac,, is the initial value of 
the core radius. For finite-amplitude disturbances this variation in core size cannot be 
neglected and is discussed in 9 3. 

For convenience, the origin of time is chosen so that a t  t = 0 the centre of the 
approaching sphere is a t  the position of the undisturbed vortex. Thus t = - 00 corres- 
ponds to the time when the sphere is a t  infinity and the vortex is straight. The para- 
meter 5 is chosen so that 

X ( [ ,  -00) = [k, --03 < ( < CO. (2.9) 

At subsequent times < = constant will always represent the same fluid particle. 
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For an infinitesimal disturbance to the vortex, the parametric equation of the 

(2.10) 

where a < 1.  a measures the amplitude of the response of the vortex. The external 
velocity field VE must also be expanded in terms of a. Thus 

(2.11) 

perturbed vortex is taken as 

X(5, t )  = (5k + ax‘(5,t) + 0(a2)), 

vE(f;, ‘$) = aVk([, t )  + O(O1’). 

Substituting (2.10) and (2.11) into (2.4) and retaining terms to order a only gives 

where [S,] implies Crow’s cut-off method. In view of (2.8) and the constancy of the 

(2.13) core radius 

To solve (2.12) for a given V&, the Fourier transform of the equation with respect 

Scco = €( 1 + O(a)). 

to to is taken. Thus, writing 

%(k, t )  = j x‘(t0, t )  e%dE0, q E ( k ,  t )  = Sm Vg (to, t )  eiktodgO, (2.14) 
- m  -m 

the transform equation, after a change in variable of the cut-off integral, becomes 

where now the cut-off in the inner integral is implied at x = 0 (so that ( - Scco, Scco) 
is removed from the range of the inner integral). Thus, since the range of this integral 
is now independent of to, the order of the integration can simply be changed to give 
(suppressing the time dependence for convenience), 

Sm kJe co 

1 -cosx-xsinx 
5 3  

in view of (2.13). The integral on the right-hand side can be written in terms of cosine 
integral (C,(q)) to give 

where 

!!&!) = - 2k2w(kScc0) k A %(k, t )  + G&, B, t )  
at 

t It may be noted that (2.15) can be used to consider the motion of an infinitely long straight 
vortex filament when subjected to an arbitrary infinitesimal irrotational velocity field. In 
Dhanak (1980), (2.15) is used to consider the interaction between an infinitely long straight 
vortex and a point source and in the case of a hollow vortex the results are compared with those 
obtained using classical methods (see Ffowcs Williams & O’Shea (1970)). There is a good agree- 
ment between these results for cold, < 0.2,  where d, is the non-dimensionalized distance be- 
tween the position of the point source and that of the undisturbed vortex. This gives confidence 
in using the cut-off method in the present problem. 
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FIGURE 1 .  Co-ordinate system used in $ 3  2, 4. 
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It now remains to obtain an expression for the velocity contribution Vk before 
(2.15) can be solved. Suppose that, a t  time t*, the centre of the sphere is a t  

where 

or in non-dimensional form 

and 
XoV) = ( - - . L O ,  0 )  (2.16) 

1 f = - - t  - 
B '  

c O < t < o o .  

The external velocity a t  the vortex is due to the image vorticity in the sphere and 
due to the motion of the sphere. In  the absence of the vortex, the velocity field a t  a 
point x* can be described by the potential 

$ax*) = Ua($,(x) + $ M ( X ) ) ,  (2.17) 

where $ I  and $M are respectively the contributions (non-dimensional) due to the 
image vorticity and the motion of the sphere. 

To evaluate $ I  when the vortex is given by its perturbed position (2.10), we write 

$1 = $ O A 1  + 4 l l  + O(a2) ) ,  (2.18) 

where $oI is the non-dimensional velocity potential due to the image of the undisturbed 
vortex in the sphere and the O ( C ~ $ ~ ~ )  terms allow for the perturbation from the straight 
vortex. 

The potential f i O I  can be determined by as spherical harmonic analysis as follows. 
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In a co-ordinate fmme &@?, fixed with respect to the centre of the sphere, the un- 
disturbed position of the vortex is given by Y = y (see figure 1) where 

5? = X([, - 00) - X, ( t )  = (f, 0, [), - 00 < [ < 00. (2.19) 

In the absence of the sphere, the velocity at a field point Y = (Z;,g,Z) is due to the 
straight vortex and the velocity potential is given by 

$,*(Y) = - tan-1 - r y” 
27l 5 - f ’  

so that (4, = $$/Ua)  - 
$,(Y) = 2B tan-1& 

x - f  

= 2B tan-l ( sin 
$ ) r sin0 cos $- f ’ (2.20) 

in terms of spherical polars ( r ,  8, $), r2 = E2 + fj2 + .Z2. We seek the disturbance poten- 
tial $oz when a rigid sphere is introduced. is to satisfy the boundary condition 

(2.21) 

For r / f  < 1,  $o can be expanded in terms of spherical solid harmonics (Lamb, cha. 

r3 sin 3$ P;(cos 8) + . . .), (2.22) 

where Pk(p)  are the modified Legendre polynomials. Corresponding to each harmonic 
term on the right-hand side of (2.22), there exists a complementary harmonic function 
obtained by dividing the term by where n is the degree of the given harmonic. 

is the appropriate linear combination of these complementary functions. Thus, in 
view of (2.21)’ 

V, 1932) as 
r2 sin 2$ 

6 f  = 45f3 
~a , ( cos  0) + r sin 0 $, = -2B(T p:(cOs 0) + 

1 1 sin 3$ 
sin $P:(cos 0) + 92 sin 2$P3cos 8 )  + - 

9r f 60r4f3 

or in terms of 2,  y”, Z 
2B g 253 ( 3 E 2 - y ” z ) y ” + . . . )  

$01 = - - 1- +-+- 
f r3  2 3fr2 4f2r4 

(Alternatively, from the sphere theorem (Weiss 1944) 

u du S’ 0 ( U E  - ry) + Y”2u2’ 
$oI  = - 2Brfy” 

The potential $M(Y) in (2.17) is given by 

(2.23) 

(2.24) 

Thus, in the absence of the vortex, the (non-dimensional) velocity field U,(Y) is given 

In view of (2. lo), the parametric equation of the perturbed vortex in &gZ frame is 

(2.25) 

by U,(Y) = V$,+ $ O I ( 1 +  O ( 4 ) .  

Y([, t )  = v + ax’([, t )  + O(a2), 
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where is given by ( 2 . 1 9 ) .  Then VE(c ,  t) (= UE(Y(& t))) is 
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( 2 . 2 6 )  

Thus if the response of the vortex is considered on a time scale of O( 1 )  (i.e. t* = O(a2/r ) )  
andB = 0(1),thenitfollowsfrom(2.11)and(2.13)thata = O(l/f3)(since IYI = O(f)), 
and this is required to be small in the linear analysis. Thus, since f = f ( t ) ,  the linear 
analysis will be valid provided t 6 T < 0, where T is such that 

1 
a = - < l ,  (2 .27)  A 

where fT = 1 f (T) I .  Thus in ( 2 . 1 3 ) ,  

( 2 . 2 8 )  

The contribution from the two terms in ( 2 . 2 8 )  is comparable iff = O(B) .  

gives 
Substituting ( 2 . 2 8 )  into ( 2 . 1 3 )  and writing x‘ = (x’,y’,z’) and using ~ ’ ( 6 ,  -a) = 0 

To determine x’(co, t )  and y’(Eo, t ) ,  the Fourier transform of V& is taken with respect 
to to and substituted into ( 2 . 1 5 ) .  This gives 

82 _ -  - 2 k 2 w ( k ~ c c o ) ~ + A l ( k , t ) ,  !!!? = - 2 k 2 ~ ( k 6 , c 0 ) 2 + A 2 ( k , t ) ,  (2 .30)  at at 
where 

k 
aA,(k, t)  = - - K J k f )  + k2K2(kf ) ,  

( 2 . 3 1 )  
f 
2B k 4k2 

aA2(k,t) = -- f f  ( - K l ( k f ) + - K 2 ( k f ) ) ,  9 f  

Here K,(q) is the mth-order Bessel function of the second kind. 
To solve ( 2 . 3 0 ) ,  the definition of A,(k,  t) and A2(k,  t )  is arbitrarily extended to the 

range t > T and the Fourier transform of ( 2 . 3 0 )  with respect to t is taken. Defining 
half-range Fourier transforms as 

equations for (xy,yT) and (x?,~?‘), obtained on transforming ( 2 . 3 0 ) ,  are solved in 
terms of A @ ,  AT* and inverted as 

( 2 . 3 3 )  
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where the paths of integration are closed in the appropriate half of the s-plane 
(b ,  c > 0) for inversion. Finally, 2 and y  ̂ are inverted with respect to k to give 

x cos (k&)dt,dk, t < T ,  (2.34) 

where 8 = 2Bk20(k8,cO)tl and aA, and aA2 are given by (2.31). To evaluate the 
double integrals in (2.34), k = s cos 6' and t, = ssin 8, where 0 6 s < 00 and 0 6 6' < tn, 
is written and the integration carried out overs and 0 variables. This means that only 
one of the integrals is over an infinite range. 

3. Approaching sphere in the proximity of the sphere 
In this section, a procedure is described for following the evolution of t,he vortex 

filament in the presence of the approaching sphere from its configuration at  a time 
t, ( 6  T < O ) ,  given by (2.10), (2.29) and (2.34), for times subsequent to t,. 

The evolution is followed by a step-wise numerical integration of the integro- 
differential equation (2.4), the contribution V,(co, t )  due to the evolving image system 
and due to the motion of the sphere being evaluated a t  each time step. The exact 
image system is discussed in $ 4, where an expression for V, is obtained. 

The cut-off method employed in the linear analysis in $ 2  to evaluate the self- 
induced velocity integral is inconvenient to use for numerical work. Instead, following 
Moore (1972), Rosenhead's method of cut-off is used here. This requires that the 
denominator of the integrand in the self-induced velocity line integral in (2.4) be 
replaced by {JX([,, t )  -X([, t)l2+p2)f, where ,u is proportional to c(gO, t ) ,  the local 
radius of the core, the integration being carried out over the entire range. Thus 
,u = 28,,c. 8, is determined in the same way as 8, by comparing the solution using 
Rosenhead's cut-off method with the exact solution for a circular ring. This gives 

aR = e-l8,, (3.1) 

for a filament with no axial flow. For a uniform vortex, 

Now, as pointed out in $ 2 ,  the variation in core size cannot be neglected when 
finite amplitude disturbances are considered and a rule for evaluating c a t  each time 
step must be given. Moore & Saffman (1972) show that any variation in the internal 
structure along the length of the filament are smoothed out in a time which is short 
compared with the time scale associated with the change in the geometric configura- 
tion of the filament. Thus, on the time sca,le of filament motion, the (non-dimensional) 
core radius c and swirl velocity v are independent of position along the vortex ring. 
c = c ( t )  such that the volume of the filament is conserved. Also v = v(rl, t ) ,  where rl 
is the (non-dimensional) radial distance from the axis of the filament, so that, in view 
of the conservation of circulation, 

2 
= rl -f(a), f ( 1 )  = 1 ,  (3.3) 
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where f is determined from the initial structure of the vortex. Thus from (2.6) 

so that 8, and hence a,, (see (3.1)) is constant throughout the motion, as required. 

writing X(5, t )  = (2, y, z ) ,  
The motion of the vortex filament will be symmetrical about z = 0 plane so that, 

Thus i t  is only necessary to follow the portion 0 6 5 < 00 of the filament, say, and use 
(3.5) to determine the shape of the remaining portion of the filament. 

Thus, given an expression for V&, t ) ,  the motion of the vortex can be determined 
by simply integrating (2.4) forward in time, calculating p(t) a t  each time step. How- 
ever, a method for dealing with the infinite range of the integration must be described. 

It is expected that, in the time of interest, the position of those portions of the 
vortex which are further than a distance of a few radii of the sphere away from z = 0 
plane will not be significantly different from that given by (2.10), (2.29) and (2.34). 
Thus, in view of the decay of x' with 5 -+ f CO, the range of the numerical integration 
is truncated from ( - 00, m) to [ - A ,  A ]  and the portions of the vortex corresponding 
to ( - 00, - A )  and (A ,  co) are assumed to be straight and fixed in their undisturbed 
position. The contribution from these straight portions to the velocity a t  the points 
on the portion corresponding to [ - A ,  A ]  is evaluated analytically. 

This method of dividing up the range of integration means that small kinks will 
develop at 5 = f A and these will affect the velocity a t  points near 5 = 5 A.  Thus A 
must be chosen so that these points are well outside the range of interest. However, 
the disturbance due to the kinks will propagate down the length of the vortex and the 
calculations must be stopped once this starts affecting the velocity a t  points in the 
range of interest. In  the calculations described below, when the calculations were 
stopped, the disturbance due to the kinks had progressed only a short distance down 
the vortex and the difficulty did not arise. 

Thus the self-induced velocity integral in (2.4) is written as 

where 
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Although the integrand in the cut-off integral is finite everywhere, it is large in 
the neighbourhood of 5 = to and this would cause loss of accuracy in evaluating the 
integral. Thus (see Moore 1972) it is necessary to subtract off a suitable function from 
the integrand and write the equation of motion (2.4) as 

where 

and I,(<,t) is given by (3.7). The integrand in the first integral in (3.8) is O(1) every- 
where while the second integral is elementary. 

For the nonlinear problem, the variations in core size cannot be ignored so that, in 
view of the uniformity of the vortex cross-section and conservation of volume, 

(3.10) 

where co is the (non-dimensional) uniform core radius of the vortex filament in the 
undisturbed state and where the volume of the portion of the vortex corresponding 
to [ - A ,  A ]  is required to remain constant. 

Since the displacement of the vortex from its undisturbed state decreases away 
from z = 0 plane (cf. (2.29)), the distribution of the Lagrangian points on the vortex 
can be chosen in such a way that the size of the spatial grid increases away from 5 = 0 
point. The choice made here is 

5 = sgn(V) V2,  -00 < V < 00. (3.11) 

However, any suitable choice of function can be used. The range [-,,/A, JAJ of V 
was divided into three parts, [ - J A ,  --A,],  [-A,,A,] and [A,, JA] .  The range 
[-A,, A,] was divided into 2 4  portions by 2N,+ I equally spaced grid points. In the 
outer ranges, [ - JA,  -A, ]  and [A,, J A ] ,  the grid spacing was chosen to be twice that 
in [-A,, A,], A being chosen so that there are 2N2 portions of equal length in each of 
the outer ranges; hence a total of 2(N, +N,)  + 1 points per half range [O, JA]  was used. 
The spatial derivatives were calculated using four-point differences at  all points; the 
particular choice of grid spacing allowed the use of the centred formulae at  points 
near V = +-A, .  Sirnpson’s rule was used to evaluate the integrals. The integration 
forward in time was effected by the fourth-order Runge-Kutta formula, used because 
of its stability. 

In  3 4 an expression for V, is obtained and the results of the calculations are des- 
cribed in 8 5. 

4. External velocity field 
The image system of a vortex element in a sphere has been given by Lighthill (1956). 

This is briefly described here and an expression for the velocity field due to the image 
system of an infinitely long vortex is obtained. 
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Suppose that, with the centre of a sphere of radius a a t  the origin, a vortex element 
of length ds* and circulation r is situated a t  YT (see figure 1). The strength of the 
element J *  is defined as 

Then, writing IY:l = r:, the image system of the vortex element is given by 
(i) a vortex element of strength 

a t  the inverse point 

and 
(ii) a line vortex of circulation - (J* . Y:)/arT stretching from the inverse point 

to  the centre of the sphere. 
The image system satisfies the boundary condition at the surface of the sphere and 

the requirement that the vorticity field inside the sphere be solenoidal. The latter 
condition is necessary if the corresponding Biot-Savart velocity field is to be 
irrotational. 

For an infinitely long straight vortex filament, (i) and (ii) imply that  the image 
system consists of a vortex ring given by IY* - BYTI = I)YTI and a vortex sheet 
extending over the interior of that circle (cf. N'eiss 1944). 

I n  view of (if and (ii) the velocity at a field point Y* due to the image system of a 
vortex element a t  Y: is given by 

su* = - a (2(J*.$,)Q,- J * ) A ( Y * - ( ~ ~ / ~ T ) P , )  
4nrT I Y *  - 

where 9, = Y:/rT. Thus in view of (4.1), in terms of the non-dimensionalized quan- 
tities (r: = ar,,Y* = aY,,ds* = ads and Su* = USu), 

su =was, 
where 

(4.3) 

(4.4) 
Note that the integral in the expression is elementary. 

Equation (4.3) is used here to obtain an expression for the instantaneous velocity 
due to the image system of the evolving infinitely long vortex filament of $4 so that 
Y, is given parametrically by 

Y, = X(& t ) -XXo( t ) ,  -00 < 6 < 00, -00 < t < 00, (4.5) 
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where X,(t) is given by (2.16). The vortex is regarded as being closed by a semi-circle 
of infinite radius (this is consistent with the spherical harmonic analysis of 8 3 since, 
in obtaining the velocity potential #, (2.20) of an infinitely long straight vortex, the 
same assumption is made). The velocity field is then given by $ W ds, where the integral 
is taken round the closed loop. However, if W is expanded in powers of l/r, (r,  > 1 )  
as (writing IYI = r )  

and integrated term by term, the first term integrates to zero so that 

The integrand in the integral on the right-hand side is of O( 1/R2) on the semi-circular 
path of integration, where R is the radius of the semi-circle, so that, in the limit R+m, 
integration along this path gives null contribution. Thus 

if the vortex is given by the parametric equation (4.5). 
The instantaneous position of any point on the portion of the vortex filament 

corresponding to - A  ,< fl  ,< A is governed by the evolution equation (3.8). The 
portions corresponding to - 00 < 6 < - A  and A < fl  < co are straight (see Q 3) and 
for points on these portions Y, is given by 

(4.9) 

so that ds = (0 ,  0 , l )  ds. 
An expression for the velocity due to the straight portions can be obtained from 

(4.3). After an integration by parts of the integral with respect to A and a change of 
variable A = ( l/rl) A,, the order of the integration can be changed and the integration 
with respect to 5 performed. Thus (4.7) becomes 

$ W d s = /  - A < [ < A  (4.10) 

where MJY) is the contribution from the image of the straight portions in the sphere 
and is given in the appendix. 

Finally, in view of the motion of the sphere, the external (non-dimensional) velocity 
U,(Y) at a field point Y in the absence of the vortex filament is given by 

U,(Y) = $Wds+V#*, 

where #* is given by (2.17). Then 

(4.11) 
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where 
y o  = X( t0 ,  t )  - XO(t), 

and Y, in (4.10) and (4.6) is given by (4.5). 
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(4.13) 

5. Numerical results 
To present the results, a time t, is defined as 

t ,  = t - t,, (5.1) 

where t ,  ( < T < 0) is the ‘switch-over ’ time when the shape of the vortex is evaluated 
from the linear analysis of 3 2 and the evolution of the vortex from this configuration 
is foliowed numerically for subsequent times. 

The initial core radius was chosen as 

(5.2) 
co* c0 G - = 0.125. 
a 

This allowed the evolution of the vortex to be followed using a reasonable number of 
grid points. The core size is not small as required by the cut-off theory since it is 
expected that, when the sphere is close to the vortex, the portion of the vortex which 
is of interest will have a radius of curvature p (non-dimensional) of O(1). However, 
in the absence of axial flow, the error in the cut-off approximation is of the same order 
in co /p  as in Saffman’s (1970) formula for the velocity of a circular vortex ring. By 
comparing with numerical calculations of the full equations of motion, Fraenkel(l970) 
and Norbury (1973) have shown that Saffman’s formula is fairly good for values of 
co/p which are not small compared with unity. Thus, although no rigorous proof is 
available, it is reasonable to expect that the cut-off theory will hold equally well for 
such values of co/p. I n  any case the results are not very sensitive to the value of co/p; 
this is because the velocity obtained by the cut-off approximation depends only 
logarithmically on the cut-off length and hence on the core size. 

The vorticity distribution in the vortex was taken to be uniform so that 8, is given 
by (3.2). 

It is clear from the results (2.34) of the linear analysis that a t  any given time the 
= 0 point will be most displaced from its undisturbed position. The y-displacement 

of the E = 0 point was calculated from (2.34) for various values of the ratio l/f, where 
f is as in (2.16). The double integral in (2.34) was evaluated by transforming k, t vari- 
ables to s, 0 variables as explained at the end of 9 2. The infinite range of s was trun- 
cated to  (O,s,) over which the integration was carried out using Simpson’s rule. 
Over the range ( s ~ , ,  00) the integrand is highly oscillatory and the integral with respect 
to 0 is approximately evaluated using one of the standard methods used for dealing 
with such integrals. The results for three values of B, namely B = 10, 5 and 2.5, are 
shown in figure 2, where iy/ f 1 is plotted against I /  f. 

It was decided to follow the evolution of the vortex, subsequent to time t,, numeric- 
ally for the cases B = 10 and B = 5 .  The choice of t, is made in the following way. 
For the two cases considered, the times Zs when I y/f 1 is 2+ yo, 5 yo etc. is determined 
from figure 2. At each time, the shape of the vortex is evaluated from (2.10), (2.29) 
and (2.34). Using this as starting configuration of the vortex, equation (3.8) is 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0-8 

B Nl N2 A. *I A h  
5 10 1 1  16.384 0.6325 0.008 

10 10 11 16.384 0.6325 0.016 

TABLE 1 

integrated numerically over a trial period and the values of y / f  obtained from the 
calculations are compared with the results of linear analysis. t, is then chosen to  be 
the maximum value of f, for which there is reasonable agreement between the two 
results over the trial period. 

For both B = 10 and B = 5 cases, it was found possible to  choose t, so that y/f was 
9 yo at  t,. However, for convenience, t, was chosen so that for both cases 1/f = 0.5. 
This implies 

From figure 2, I y/ f I is 9 yo a t  this time for B = 10 case and 7 % for B = 5. Thus linear 
theory is adequate until the sphere is fairly close to  the vortex. 

Table 1 shows the values of N,, N,, A ,  A ,  and time step At, used in the calculations. 
Trial and error showed that these gave adequate accuracy. 

At time t ,  = &, shown in table 2, the centre of the core a t  5 = 0 point was a distance 
d^ (see table 2) away from the centre of the sphere. This implies that  the core of the 

t, = -2B.  (5.3) 
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A 

B t l  2 t M  YM ZI 

> 2.568 1.119 2.672 - 1.057 2.608 
10 3.600 1.123 3.710 - 1.057 3.696 

TABLE 2 

Y 

Undisturbed position 
of the vortex 

1.5 

-2.0 

FIGURE 3.  Track of ,$ = 0 point of the vortex in the z,y plane for B = 10. C, and CM are the 
positions of the centre of the sphere corresponding to the positions P,  and PM of the vortex. 
The sphere has been drawn in these two cases while for intermediate times only the centre of 
the sphere is shown. PM is the position of the vortex at  t ,  = t ~ .  The circulation of the vortex 
is in anti-clockwise sense. 

vortex is touching the sphere. The situation is similar to that of two vortex filaments 
with their cores touching. The results a t  this stage may be viewed with scepticism 
since the calculations are based on the assumption that the separation between the 
vortex and its image is large. However, by means of a numerical calculation with 
vortices in two dimensions, in which the core was allowed for, Moore (1972) was 
able to show that the Biot-Savart formula gives roughly the correct velocity even 
when the cores are touching. In  the present case, the vortex a t  6 = 0 may be regarded 
as being in contact with a tangent plane and the local situation represented two- 
dimensiona1ly.f Moore's study then suggests that, although the cores will be distorted 
so that the cut-off length will change, the approximations on which the present 
calculations are based will be reasonably adequate even when the vortex core is close 
to the sphere. 

In order to determine the maximum negative y-displacement, yAtI, i t  was decided 
to continue with the numerical integration up to the time t, = tAM when this was 

i An improvement on this would be to consider numerically the motion of a two-dimensional 
vortex of finite core round a cylinder. However, this was not attempted. 
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FIGURE 4. Side-view of the evolution of the vortex at  time t ,  = 2.56(S1), t,  = $,(S,) and 
t ,  = t ,v(S3) for B = 10. 0 marks the position of the centre of the sphere a t  these times. Only 
that portion of the filament with 0 6 z(6,  t , )  < 2.3 is shown. 

i -1.0 -0.5 

. 
\ 

\ 

\ 

\ 

\ 

\ 

FIGURE 5 .  End-view of the evolution of the vortex at times t ,  = 2.56(S1), t ,  = $,(S,) and 
t ,  = t ~ ( 8 ~ )  for B = 10. Only that portion of the filament with 0 < z(& t,) < 2.3 is shown. 
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.. --f- -1.0 

-1.5 

-2.0 

FIGURE 6. Plan-view of the vortex at  times t ,  = 2.56(S1),  t ,  = &(S2) and t ,  = t M ( S g )  for B = 10. 
0 marks the position of the centre of the sphere at  these times. Note that in the plan view 
the points of the filament corresponding to t ~ i  {( - 03, - A )  u ( A ,  a)} are mapped onto (0 ,  0). 
* indicates the position of the point corresponding to 6 = 0. 

achieved. lyMl was maximum when the x-coordinate of k = 0 point coincided with 
the x-co-ordinate of the centre of the sphere. The values of yM and t ,  are shown in 
table 2. 

The position of the portion of the vortex near z = 0 plane, due to  its proximity to 
the sphere, changes rapidly while points on the vortex a distance further than 1 
from the z = 0 plane are displaced by a small amount. At t ,  = i?, (see table 2) numerical 
instability became established in the neighbourhood of the z = 0 plane, presumably 
because of the rapid changes there and because the distance between the grid 
points is not small compared with the separation between the vortex centre and 
the image. To cure this, the calculations were stopped a t  t ,  = t; - 2At, and restarted 
with more points so that the grid spacing was reduced by half and the time step was 
taken to be &At,. This removed the instability. 

I n  figure 2 various values of I y/fl for times subsequent to t, are shown for the two 
cases considered and compared with the corresponding results of linear analysis. 
The results from the numerical calculations are shown up to the time when Iy/fl 
achieves a maximum value. For subsequent times the value of 1 y/f(  drops. The reason 
may be apparent from figure 3 which shows the track of 6 = 0 point in the x - y  plane 
for the case B = 10. As the vortex ' clears ' the sphere a t  time t ,  = t ,  the vortex appears 
to follow a roughly circular path round the sphere. This is confirmed by integration 
over a few additional time steps which show that the magnitude of the y-displacement 
falls for t ,  > t,. To follow the motion of the vortex for subsequent times, more grid 
points and smaller time steps are necessary. However, in view of the dubious signifi- 
cance of the results a t  this stage, this was not done. 
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I n  figure 4 three views of the side elevations a t  different stages of the evolution are 
shown for the B = 10 case while figure 5 shows the corresponding end elevations. 
Only the portion of the filament near z = 0 for z > 0 is shown in the figures. The figures 
clearly show the rapid change in shape of the vortex near z = 0 plane subsequent to 
time t ,  = &. The plan view is shown in figure 6; the asterisk indicates the position of 
the point on the filament corresponding to 6 = 0. At any instant this point is displaced 
furthest from the undisturbed position (0.0). 

In  both B = 5 and B = 10 cases, the overall increase in length of the portion of the 
vortex considered increased by less than 1.5 yo. The vortex stretched most in the 
neighbourhood of [ = 0 point where, in the B = 10 case, the distance between two 
points, initially a distance 6z apart, increased to 1 . 3 8 ~  a t  t ,  = i, and to 582 a t  t, = t,. 
The corresponding values in B = 5 case were similar. Away from 6 = 0 points, certain 
portions of the vortex underwent contraction. 

A due to the truncation of the vixtex had progressed 
by a distance less than 1 down the length of the vortex and did not affect the velocity 
a t  points on the vortex a distance less than 5 from z = 0 plane. 

A qualitative experiment was conducted in a cylindrical tank of water in which a 
'bathtub vortex' was set up a t  the centre. From the edge of the tank, a sphere was 
moved towards the vortex a t  a speed corresponding to B = 10. Dye was used for flow 
visualization. 

The vorticity distribution in the bathtub vortex is not uniform. However, it is 
expected that this will make only a quantitative difference to the motion of the vortex. 

As anticipated here, the vortex does not move appreciably until the sphere is quite 
close to the vortex, when it commences to move in the sense indicated in figure 5. 
However, the cross stream induced by the vortex over the sphere produces a side 
wake in the region into which the vortex is starting to  move. The wake appears to 
interact strongly with the vortex filament, which soon breaks up. 

Thus the present calculations are of approximate validity in real fluids since viscous 
diffusion and the wake of the sphere have been excluded in the calculations. 

At t = t ,  the kinks a t  6 = 

I am grateful to Professor D. W. Moore for suggesting the problem and for his 
encouragement and advice. During the preparation of this paper, I was financially 
supported by the Science Research Council. 

Appendix. Velocity contribution from the image of the straight portions of 
the vortex filament in the sphere 

Here an expression for M,(Y) in (4.10) is written down. By integrating the integrand 
on the right-hand side of (4.8) over 6~ ( - co, - A )  and [E ( A ,  00) in the manner des- 
cribed in $4, we have 



A n  approaching sphere interacting with a vortex $lament 147 

Here 

~ ( 7 )  = t i  -I? 9 ,  
r 

f is as in ( 2 . 1 6 )  and Jnm(y) are given by: 

A + k . P ( r ) +  A-k.P(V) 
IAk+ P(7)l I - A k +  P(7)l ] ' 

Putting A = 0 in (A I), we obtain the velocity due to the image system of an infi- 
nitely long straight vortex. The result is in agreement with that given by Weiss (1944) 
for this case; Weiss obtained the result using his sphere theorem. Note that the sphere 
theorem is inconvenient to use in the present nonlinear problem since it requires 
evaluating the velocity potential of the evolving vortex a t  each time step. 

As a further check, putting A = 0 in (A 1) and expanding M, in powers of l / r 2  
gives a result in agreement with the spherical harmonic analysis of 4 2 .  
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